Real Time Monitoring and Neuro-Fuzzy Based Fault Diagnosis of Flow Process in Hybrid System

نویسنده

  • Pallikonda Rajasekaran
چکیده

Process variables vary with time in certain applications. Monitoring systems let us avoid severe economic losses resulting from unexpected electric system failures by improving the system reliability and maintainability The installation and maintenance of such monitoring systems is easy when it is implemented using wireless techniques. ZigBee protocol, that is a wireless technology developed as open global standard to address the low-cost, low-power wireless sensor networks. The goal is to monitor the parameters and to classify the parameters in normal and abnormal conditions to detect fault in the process as early as possible by using artificial intelligent techniques. A key issue is to prevent local faults to be developed into system failures that may cause safety hazards, stop temporarily the production and possible detrimental environment impact. Several techniques are being investigated as an extension to the traditional fault detection and diagnosis. Computational intelligence techniques are being investigated as an extension to the traditional fault detection and diagnosis methods. This paper proposes ANFIS (Adaptive Neural Fuzzy Inference System) for fault detection and diagnosis. In ANFIS, the fuzzy logic will create the rules and membership functions whereas the neural network trains the membership function to get the best output. The output of ANFIS is compared with Back Propagation Algorithm (BPN) algorithm of neural network. The training and testing data required to develop the ANFIS model were generated at different operating conditions by running the process and by creating various faults in real time in a laboratory experimental model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems

some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...

متن کامل

Voting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems

some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...

متن کامل

Adaptive Online Traffic Flow Prediction Using Aggregated Neuro Fuzzy Approach

Short term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems. Although various methodologies have been applied to forecast traffic parameters, several researchers have showed that compared with the individual methods, hybrid methods provide more accurate results . These results made the hybrid tools and approaches a more common method for ...

متن کامل

A neuro-fuzzy approach to vehicular traffic flow prediction for a metropolis in a developing country

Short-term prediction of traffic flow is central to alleviating congestion and controlling the negative impacts of environmental pollution resulting from vehicle emissions on both inter- and intra-urban highways. The strong need to monitor and control congestion time and costs for metropolis in developing countries has therefore motivated the current study. This paper establishes the applicatio...

متن کامل

Neuro-fuzzy Approach for Fault Location and Diagnosis Using Online Learning System

This paper outlines a hybrid approach of neuro-fuzzy based learning and classification approach based on the online learning systems. The effect of fault diagnosis for the suggested fault location tool is evaluated over the conventional fault diagnosis based approaches. The method of fault location based on the conventional offline neuro controller approach is compared with the suggested hybrid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011